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The shape of the detached shock wave over its subsonic segment (i.e. the segment where 

the velocity behind the wave is subsonic) in a uniform sream flowing past a convex pro- 
file was investigated in [l]. In that paper we established that for an oncoming stream 

with a sufficiently small number M, the shock wave has its convex side directed towards 
the oncoming stream, at least over the segment where M < nf, (k, M,) < i,(where M, 

is some constant, B.?* + 1 as M;, -* 1). 

We shall provide a similar statement for the general case of a smooth but not necessarily 
convex profile. (This property was noted by the authors of rz] in calculating flows past 

nonconvex bodies). Unlike [l]. the present paper deals solely with low supersonic velo- 
cities of the oncoming stream for which variations of the entropy at the shock wave may 
be neglected. 

Let us now consider the flow of a uniform supersonic stream with a detached shock 
wave past a smooth profile. 

We denote by Q the domain of subsonic velocities whose boundary I’ (Q) consists of 
segments of the profle contour, shock wave, and sonic lines. The domain Q is formed 
as a result of the presence of a critical point 0 (the branch point of the streamline oscw 

lating the profile) where the velocity is equal to zero. 

We assume that the following conditions are satisfied. 
1, The shock wave is smooth everywhere. 

2. The domain Q is the only domain of subsonic velocities behind the shock wave. 
3. The domain Q is not contiguous with any supersonic domains bounded solely by 

the profile contour and sonic lines. 

4, The contour I’ (Q) does not contain “secondary” shock waves. 

We intend to show that under these conditions the shock wave has its convex side turned 
towards the oncoming stream at every point of the subsonic velocity domain. 

Let us denote by A the mapping of the domain behind the shock wave lying in the 

physical plane xy into the hodograph plane @ (h is the velocity coefficient and 8 is the 
angle of inclination of the velocity vector; the axes 6, y are directed vertically upward 
and the axes X, z ho~zontally to the right). We denote the boundary of A(Q) by f (A (Qf). 

1”. As we know (e. g. see [3]), 

J = 8 (J., 6) Ia (.z, y) < 0 for h < 1 (i) 

(where equality is possible at isolated points only). Since the mapping is convolution- 

free for h < 1 (J = 0 at the edge of a convolution), we have I (A (Q)) c A (r (0)). 

There is no coincidence if the mapping A is nonsinglevalued (in the whole) ; A (I (Q)) 
has self-intersection points (the points Ii,, Kz in Fig. 1). 

2’. Expression (1) implies the following rule: the traversal of I (Q) such that Q re- 
mains to the left is associated with the traversal of A (r (Q)) such that A (Q) remains to 
the right. At a sonic line this rule can be interpreted as the “law of monotonicity” of 
the velocity vector [4& 
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3”. Conditions 2 and 3 imply the connectivity of the set of points of the contour pro- 

file which belong to I’ (VI: we shall call this segment “the segment I, =: 1Y. fi.J “_ 

4”. 
al 

Let us denote by 7’ a point where the convex- 
ity of the shock wave with respect to the exterior 
normal changes. If T exists, then the relations at 

P 
the shock wave imply that travel past T corre- 
sponds in the plane ?$ to travel along the shock 

polar with the cusp at A (T). If h, < 1, then Item 
- 2” implies that the image of the shock wave in the 

neighborhood of 2’ is a cut in A (Q) (see Fig. 1, and 

also fl], Fig. 2). 
5”. The shock wave degenerates into characteris- 

tics at infinity (into a first-famiIy characteristic in 

the upper half-plane, and into a second-family char- 

Fig. 1 
acteristic in the lower half-plane). This means that 

displacements towards infinitely distant points along 
the shock polar (at a sufficient distance from the profile) corresponds to various displace- 
ments along the shock polar towards the point n which represents the unperturbed stream 
(Fig. 1). The image of the smooth shock wave on the shock polar is a continuous curve, 

so that the number of cusps in the shock wave is either even or equal to zero. Recalling 
what we said in Item 4”, we infer that the number of points T is either even or equal to 
zero. 

6”. The points of the shock wave belonging to I’ iQj form a connected set. Let us 

assume the opposite, i.e. that the shock wave contains a “supersonic” segment IS, Cl, 
and that the velocity to the right and left of this segment on the shock wave is subsonic. 
The sonic curve which emerges from the point B must pass through the point C, since 
by Condition 2 it cannot connect the point U with the profile contour. In accordance 

with the “law of monotonicity” of the velocity vector at a sonic line [4] (see also Item 

2’), the points A(B) and A(C) are distinct points of the shock polar (the case ofa straight 
sonic line represented by a single point in the plane does not arise : such a sonic line 

cannot be constructed in the physical plane, since it is orthogonal to the streamlines). 

The image of the segment 1~9, C] would be a continuous curve (Condition 1) over the 
entire supersonic segment of the shock polar. Since this segment contains the point n 
(Fig. l), it follows that the shock wave must break at this point. This contradicts Condi- 

tion 1. 
‘7”, We infer from Condition 2, 3 and Items 3*, 6” that A (I‘ (Q)) consists of A (I,), 

the entire subsonic segment of the shock polar, and two segments of the line h - I : 
the mapping A (L) = [A (E), A (F)] = [e, fJ contains a segment [Or, O,] of the axis 
h = i) of length x; this segment is the locus of the critical point 0 (Fig. 1). 

We denote the subsonic segment of the shock polar in the hodograph plane by S = Id,, 
$1, the subsonic domain inside the shock polar by U, and the subsonic domain outside 
the shock polar by v. 

8”. We call a point T, at which h < 1, a point a. The number of points Ii is either 
even or equal to zero. fn fact, we infer From Items 4”. ‘7” and Condition 1 that the 
image of the subsonic segment of the shock wave is a continuous curve over the entire 
segment S; the number of cusps in this curve is eitl ?r even or equal to zero. 
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2”. Let us suppose that points R do exist. By Item 4”, this means that A (Q) intersects 
the shock polar. 

The inverse image S breaks down the closure of Q into subsets, We shall call these 
sets ” n-sheets” and denote them by qr/ and qv, provided there 

A(qrJ=arJC:U, A(rlv)=a,cV 

There are two types of 7~ -sheets: an n-sheet of the first type (unlike an n-sheet of 
the second type)is contiguous with a connected segment of the shock wave (see Items 4”. 
6”). In the plane Xl‘3 every m-sheet of the second type au (a~) is contiguous with an n- 
sheet of the first or second type aV (at,) along some segment of the shock polar whose 

inverse image does not lie on the shock wave (this segment contracts to a point if 
hn= 1). 

Let us denote by o the closure of the join of contiguous n-sheets of the second type. 
Each tr is contiguous with an n-sheet of the first type. Otherwise, u would be bounded 

only by the profile contour, since a sonic line and the shock wave can bound an n-sheet 
of the first type only. 

We shall apply the term ” n -sheet” (without indicating the type) to the join of an 
n -sheet of the first type with all contiguous 0. 

The mapping of an h-sheet into the &p plane is generally multivalued ; let us suppose 

that it is, in fact, multivalued. 

A stream function $ (h, 8) defined on an n-sheet is multivalued; because there are 
no branch points for h < 1 (Item 1”)‘ it describes in the space *TUB a continuo~ self- 
intersecting surface stretched on the self-intersecting curve A (L) in the plane 9 = 0 

(we stipulate that I$ = 0 on L ). 
Upon joining along the lines of self-intersection the surface q~ = 9 (h, j3) becomes 

the join of the pieces of the surface joined along these lines; each of these pieces is 
described by a single-valued continuous function $ (h, p). 

Let us discard the pieces of the surface (after making the appropriate cuts along the 
joints) which are stretched on segments of the contour A (L) . This leaves just one piece 

of each surface 9 = -$J (h, B) (generated by a single n-sheet) ; the boundary of this piece 
contains the image of the shock wave (it follows by construction that the boundary of 

each n-sheet can contain only one segment of the shock wave). 
The inverse image of the projection of the remaining piece of the surface ‘11‘ = 9 (h, $1 

on the plane q = 0 (or on the entire n-sheet if its mapping is single-valued) will be 
called a “sheet Q “; its image, the sheet A (Q) , will be denoted by au (av) if it is gene- 
rated by an n-sheet of the first type qrr (qv). 

10”. Let us numner the points R in order of their occurrence as we move along the 
shock wave away from the sonic point D, = A-* (d,) where p > 0 (see Fig. 1). The 

positions of the points ri = A (Ri) on S is now different: the point r2 on the shock 
polar now lies closer to the point d, than does r,; r, is closer than r3 , etc. The points 
dr, % & break down S into segments covered an odd number of times in moving along 
the shock wave (this number differs from one segment to the next). Hence, each segment 

sk = lrzkl ra~~_rf~ (k = 1, 2,...) is covered not less than three times. From our statements 
in Items 2’. 4O, 5” we infer that there are no fewer than two sheets uv and no fewer 
than one sheet au in the neighborho~ of the segment sL c S; the number of sheets txv 
exceeds the number of sheets ar, by unity. By Condition 4, for h < i these sheets can 
be bounded only by S and A (L). 
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11”. Let us move from the point e to the point f along A (L) (and correspondingly 
along A). Since the segment ]e, f] 3 [d,, d,] on the line h = 1 m the plane hb I we 

infer (see Items 8”, 8”) that the segments ]e, gl, [f, ql exist and that (e, g) U (f, q) c 

C A (L) r] v. Let the points g, q be such that these segments are of maximum length. 
The segment [e, g] bounds one (and only one) of not fewer than two sheets a, lying 

in the neighborhood of the segment sl . Let us denote this sheet by a!). 
In fact, the segment {U,, jir,] C L does not contain points R, so that (by Items 2”. S’), 

the segment A ([D,, RI]) = id,, r& _-J sx is contiguous with one sheet a, which cannot 
be bounded only by the segment A (15) contiguous with the line h = 1. 

If g = f (q = e), then A (L) C v. We infer from Item 10” that this is possible only if 
there are no points R. We therefore assume that g # f , so that g E S. 

The statements of Item 4’ imply that the sheets av and au situated in the neighbor- 

hood of 4 are contiguous over segments of the shock polar contiguo~ with the segment 
h: the sheet ov) is bounded by C@ over the segment ]rr, gr], gfE (F-~, g) ; the sheet 
afi) is contiguous with a’$ over the segment [r&j, h E (Fzr ~$1 (the superscripts are the 
ordinal numbers of the sheets a@)). 

This implies the existence of a segment [h, p], (h, p) C A (L) n 1’ bounding the 
sheet a:). 

If p = f, then [h, pl intersects [e. g], [e, g) c: A (L) n V, since the point h lies in a 

domain bounded by the segments S of the line I = 1 and [c, g] (Fig. I), and since the 
point f iies outside this domain. Thus. the connectivity of A (L) implies that A (L) in 
this case forms a loop containing the segment s1 which is the cut for the join of the 
sheets a(‘) (i - 1, 2, 3) with the segments [rL, gl], [r2, h] 

Pi?“. Now let us assume that the boundaries of the sheets a’:) and a@) do not inter- 
sect. In this case p f j, i, e. p E S. This is equivalent to assuming the existence of the 
points Rs, HI and of the segment sz = [r.s, ~4) In fact, since a$!) contains some neighbor- 
hood of the point r2 which belongs to V, and since h E [dl, Q), we infer that p E (r2, &]. 

If the interval (nz, P), P T A-1 (p) does not contain points R, then (by the traversal rule 
of Item 1”) the image of the neighborhood of the segment (Rs, P) of the shock wave 
belongs to V. This cannot be the case, since A (L) intersects S at the point p , so that 

the image of the domain Q in the neighborhood of the point p also intersects S . Hence, 

the point Ra does, in fact, exist ; by Item 8” this also implies the existence of the point Ra. 

Just as the sheets avj, a$), a$) surround the segment SI, so the sheets a?), au , a$j’) (4) 

surround the segment sz = [rd, 01. 

a’;?’ do not intersect. 

By hypothesis, the boundaries of the sheets avj and 

If the boundaries of the sheets ag), a$) (or ~$1 and c@)j intersect, then we arrive 

at the same result as in Item 11” for p = f. On the other hand, if the boundaries of these 
sheets do not intersect, then the existence of the pair of points Rs, Rs can be proved as 
above, etc. 

Reasoning in this way the appropriate number of times, we arrive at the case of inter- 
section of the boundaries of the sheets aN and aNi-%; this is due to the ~attainabili~ of 
an infinite number of recurrences. In fact, in the absence of intersections of the segments 
A (L) bounding the sheets a’:) (i = 1, 3, 5) or a$ 

3 av%... and agj z, a($) 23 ata) 3 . . . . 

(i = 2, 4, 6) we have ay 3 a$) 53 

This is impossible, since there exists a sheet of 
zhe first type av bounded by the segment [f. ~1 of the contour A (L),the segment [I, d2] 
of the line h --1 1, and the segment [q, &] of the shock polar which is not contained in 
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a’:) U a$) (since the segment ff, dr] does not belong to the closure c$) U ag)). 
Thus, we have proved that if the shock wave contains points R, then there exists at 

least one loop W of the contour A (L) which contains the segment st = I%, r%-11. 
13”. Let us consider the loop Q formed by the boundaries of the sheets c$-l), ati), 

a(“t) (the boundaries of the sheets a (i-1) and ,(i+r) intersect). The sheet atf-‘) is con- 

tiguous with the sheet a(‘) over the segment [rk, I], [rk, Z] c S, sheet ati) is contiguous 

with the sheet afiil) over the segment [rlol, n], [rk,l, m] c S. 
According to Item 9’, a single-valued continuous function ‘i, (h, B) is defined on the 

closure of each of these sheets. This function is also continuous over the segment [rk, i] 
in passing from the sheet afiml) to the sheet a”’ and over the segment frk+l, ml in passing 

from the sheet a(i) to the sheet &r). Since Ip - 0 on A (L) , the corresponding surface 

tp = 9 (h, p) is self-intersecting in the space 9, in, p , 

Joining (along the self-intersection Iines) yields several continuous segments of the 

surface q = I$ (X, fi) joined along these lines; each of them is described by a single- 
valued function I# (h, B) . From now on we shall consider only the piece of the surface 
+ = 9 (h, 6) resting on the loop 51. We call its projection on the plane J;, = 0 the 
“sheet a* ‘I, 

The sheet a* is cut along the segment Irk, rk+ll; the two banks of this cut form a 

segment of the shock wave. The stream function $ must vary monotonically as we fol- 
low the closed trajectory along the bauks of the cut, since the shock wave does not inter- 

sect the same streamline ; 9 # const on 3 because the shock wave does not coincide 
with a streamline. This means that the stream function $ (X, B) cannot be continuo~ 

on the sheet a*.Hence, the assumption that the shock wave contains points R is invalid. 
Recalling the statements of Items I.“, 5“ we infer that the shock wave has its convex 

side turned towards the oncoming stream at every point of the subsonic segment. 
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